Effects of Ipcc Sres Emissions Scenarios on River Runoff: a Global Perspective Effects of Ipcc Sres* Emissions Scenarios on River Runoff: a Global Perspective
نویسنده
چکیده
This paper describes an assessment of the implications of future climate change for river runoff across the entire world, using six climate models which have been driven by the SRES emissions scenarios. Streamflow is simulated at a spatial resolution of 0.5 o ×0.5 o using a macro-scale hydrological model, and summed to produce total runoff for almost 1200 catchments. The effects of climate change have been compared with the effects of natural multi-decadal climatic variability, as determined from a long unforced climate simulation using HadCM3. By the 2020s, change in runoff due to climate change in approximately a third of the catchments is less than that due to natural variability but, by the 2080s, this falls to between 10 and 30%. The climate models produce broadly similar changes in runoff, with increases in high latitudes, east Africa and south and east Asia, and decreases in southern and eastern Europe, western Russia, north Africa and the Middle East, central and southern Africa, much of North America, most of South America, and south and east Asia. The pattern of change in runoff is largely determined by simulated change in precipitation, offset by a general increase in evaporation. There is little difference in the pattern of change between different emissions scenarios (for a given model), and only by the 2080s is there evidence that the magnitudes of change in runoff vary, with emissions scenario A1FI producing the greatest change and B1 the smallest. The inter-annual variability in runoff increases in most catchments due to climate change even though the inter-annual variability in precipitation is not changed and the frequency of flow below the current 10-year return period minimum annual runoff increases by a factor of three in Europe and southern Africa and of two across North America. Across most of the world climate change does not alter the timing of flows through the year but, in the marginal zone between cool and mild climates, higher temperatures mean that peak streamflow moves from spring to winter as less winter precipitation falls as snow. The spatial pattern of changes in the 10-year return period maximum monthly runoff follows changes in annual runoff.
منابع مشابه
Modeling the Projected Changes of River Flow in Central Vietnam under Different Climate Change Scenarios
Recent studies by the United Nations Environment Programme (UNEP) and the Intergovernmental Panel on Climate Change (IPCC) indicate that Vietnam is one of the countries most affected by climate change. The variability of climate in this region, characterized by large fluctuations in precipitation and temperature, has caused significant changes in surface water resources. This study aims to proj...
متن کاملA multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin
Implications of 21st century climate change on the hydrology and water resources of the Colorado River Basin were assessed using a multimodel ensemble approach in which downscaled and bias corrected output from 11 General Circulation Models (GCMs) was used to drive macroscale hydrology and water resources models. Downscaled climate scenarios (ensembles) were used as forcings to the Variable Inf...
متن کاملUsing the IHACRES model to investigate the impacts of changing climate on streamflow in a semi-arid basin in north-central Iran
Understanding the variations of streamflow of rivers is an important prerequisite for designing hydraulic structures as well as managing surface water resources in basins. An overview of the impact of climate change on the streamflow in the Hablehroud River, the main river of a semi-arid basin in north-central Iran, is provided. Using the LARS-WG statistical downscaling model, the outputs of Ha...
متن کاملValidity of the fossil fuel production outlooks in the IPCC Emission Scenarios
Anthropogenic global warming caused by CO2 emissions is strongly and fundamentally linked to future energy production. The Special Report on Emission Scenarios (SRES) from 2000 contains 40 scenarios for future fossil fuel production and is used by the IPCC to assess future climate change. Previous scenarios were withdrawn after exaggerating one or several trends. This study investigates underly...
متن کاملارزیابی اثرات تغییر اقلیم بر رواناب با استفاده از مدل هیدرولوژیکی - توزیعی WetSpa با رویکرد احتمالاتی و تحلیل عدم قطعیت (مطالعهی موردی: حوضهی رود زرد واقع در استان خوزستان)
Abstract This study examines the effects of climate change on runoff in the Yellow River basin in Khuzestan province. In this study, the combination of 14 general circulation models under two emission scenarios A2 and B1 were used for simulating the climatic variables in the next period (2025-2054) compared to the baseline period (1971-2000). The weighting method of mean observed temperature...
متن کامل